If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-113=0
a = 3; b = 0; c = -113;
Δ = b2-4ac
Δ = 02-4·3·(-113)
Δ = 1356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1356}=\sqrt{4*339}=\sqrt{4}*\sqrt{339}=2\sqrt{339}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{339}}{2*3}=\frac{0-2\sqrt{339}}{6} =-\frac{2\sqrt{339}}{6} =-\frac{\sqrt{339}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{339}}{2*3}=\frac{0+2\sqrt{339}}{6} =\frac{2\sqrt{339}}{6} =\frac{\sqrt{339}}{3} $
| x/5-1.1=-13.6 | | 7/4=x/5.4 | | −4x+2=−18 | | w/3+16=18 | | v/2-9=-9 | | 5x-4(7x+5)=-204 | | 2(3u+80)=40 | | t/2+9=18 | | 2(2x+1=30 | | 3x+74+x+79+x+87=360 | | (4+x)/8=(2x-9)/3 | | 0.30x+0.20(100-x)=24 | | 2(3u+8=40 | | 12.5=x/3.14 | | -e+7=23 | | 3(2x-1)=2x(1-9) | | 5x-43=4x+42 | | (8/5)+x=(2/3) | | 50=8−6x | | x^2-9x-722=0 | | X+11+x+55+72+3x-58=360 | | 16-2v=2 | | x+41=x=78=95 | | 26=5-7x | | 3x-46=2x+10 | | 2w+2)2w+1)=29 | | x^2+6x=-15x | | 5^x+125^(x/3)=250 | | (x–1)(x+2)(2x+2)=0 | | (8/12)=-(2/7)x | | 7x+45+x+86+x+83+74=360 | | 233=144-x |